钢结构

当前位置:   主页 > 钢结构 >

引马乡机电设备轮轴式BD060R-L2-16-B2-S4丝杆伺服减速器

文章来源:ymcdkj 发布时间:2024-05-07 18:52:23

B2-S4丝杆伺服减速器
表面完整性研究Pramanik等[38]对SiCp/661Al复合材料、661Al合金进行切削对比试验,发现低进给速度下661Al的表面粗糙度比SiCp/661Al高,但当进给量大于.3mm/r时情况却发生了转变。在试验的切削速度范围内,661Al比SiCp/661Al的表面粗糙度值高。复合材料的表面没有发现进痕,切削速度对表面粗糙度没有明显的影响。El-Gallb等[42]的研究表明,切削SiCp/Al复合材料时,已表面在碳化硅颗粒的周围有空洞产生并伴有颗粒的拔出、断裂和破碎,中拔出的颗粒在已表面拖动对其造成划伤以致形成凹槽,已表面粗糙度随进给速度的增大而减小,负的前角导致大的表面粗糙度。


在“选型”流程的初始界面,需要输入4个关键信息:
1)应用类型
选择“连续工作”或“循环运行”。任何在某一方向上运行四小时或更长时间而不停止或不改变速度的应用场合均可视为连续工作。所有其他应用场合,包括那些运行时间超过四个小时,但改变运转方向的可视为循环运行。
2)背隙要求
“超精密”级单级和双级减速机的背隙分别为3acr-min和5 arc-min。
“精度”级单级和双级减速机的背隙分别为5 acr-min和8arc-min。
“标准”级单级和双级减速机的背隙分别为8acr-min和10arc-min。
3)减速机类型或方向(直线型或直角型)
直角型减速机有三个独立选项:标准轴、双轴和空心轴。



行星减速机为什么会出现断轴其中的原因有哪些
1、在加速和减速的过程中,行星减速机输出轴所乘受瞬间的扭矩如果超过了其额定输出扭矩的2倍,并且这种加速和减速又过于频繁,那么 终也会使其断轴。考虑到这种情况出现的较少,故这里不再进一步介绍。

2、错误的选型致使所配行星减速机出力不够。有些用户在选型时,误认为只要所选减速机的额定输出扭矩满足工作要求就可以了,其实不然,一是所配电机额定输出扭矩乘上减速比,得到的数值原则上要小于产品样本的相近减速机的额定输出扭矩,二是同时还要考虑其驱动电机的过载能力及实际中所需工作扭矩。理论上,用户所需工作扭矩一定要小于额定输出扭矩的2倍。尤其是有些应用场合必须严格遵守这一准则,这不仅是对减速机里面齿轮的保护,更主要的是避免输出轴就被扭断。这主要是因为,如果设备有问题,减速机的输出轴及其负载被卡住了,这时驱动电机的过载能力依然会使其不断加大出力,进而,可能使输出轴承受的力超过其额定输出扭矩的2倍而扭断行星减速机的输出轴。

3、同样输出轴也有折断或弯曲现象发生,其原因与驱动电机的断轴原因相同。但减速机的出力是驱动电机出力和减速比之积,相对于电机来讲出力更大,故输出轴更易被折断。因此,用户在使用行星减速机时,对其输出端装配同心度的保证也应十分注意。




行星齿轮减速机工作原理:
  1)齿圈固定,太阳轮主动,行星架被动。 此种组合为降速传动,通常传动比一般为2.5~5,转向相同。
  2)齿圈固定,行星架主动,太阳轮被动。此种组合为升速传动,传动比一般为0.2~0.4,转向相同。
  3)太阳轮固定,齿圈主动,行星架被动。此种组合为降速传动,传动比一般为1.25~1.67,转向相同。
  4)太阳轮固定,行星架主动,齿圈被动。此种组合为升速传动,传动比一般为0.6~0.8,转向相同。
  5)行星架固定,太阳轮主动,齿圈被动。传动比一般为1.5~4,转向相反。
  6)行星架固定,齿圈主动,太阳轮被动。此种组合为升速传动,传动比一般为0.25~0.67,转向相反。
  7)把三元件中任意两元件结合为一体的情况:当把行星架和齿圈结合为一体作为主动件,太阳轮为被动件或者把太阳轮和行星架结合为一体作为主动件,齿圈作为被动件的运动情
  况。行星齿轮间没有相对运动,作为一个整体运转,传动比为1,转向相同。汽车上常用此种组合方式组成直接
  档。
  8)三元件中任一元件为主动,其余的两元件自由:从分析中可知,其余两元件无确定的转速输出。第六种组合方式,由于升速较大,主被动件的转向相反,在汽车上通常不用这种组合。其余的七种组合方式比较常用。

+ 0-80-S2-P2 80-S2-P2
125-S2-P2
PLF120 100-S2-P2
300-S2-P2
300-S2-P2
35-S2-P2
300-S2-P2